Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Carbohydr Res ; 536: 109015, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198982

RESUMO

The protozoan parasite Leishmania (Viannia) braziliensis is among Latin America's most widespread Leishmania species and is responsible for tegumentary leishmaniasis (TL). This disease has multiple clinical presentations, with cutaneous leishmaniasis (CL) being the most frequent. It manifests as one or a few localized skin ulcers, which can spread to other body areas. Hence, early diagnosis and treatment, typically with pentavalent antimonials, is critical. Traditional diagnostic methods, like parasite culture, microscopy, or the polymerase chain reaction (PCR) for detection of the parasite DNA, have limitations due to the uneven distribution of parasites in biopsy samples. Nonetheless, studies have revealed high levels of parasite-specific anti-α-Gal antibodies in L. (V.) braziliensis-infected patients. Previously, we demonstrated that the neoglycoprotein NGP28b, consisting of the L. (Leishmania) major type-2 glycoinositolphospholipid (GIPL)-3-derived trisaccharide Galpα1,6Galpα1,3Galfß conjugated to bovine serum albumin (BSA) via a linker, acts as a reliable serological biomarker (BMK) for L. (V.) braziliensis infection in Brazil. This indicates the presence of GIPL-3 or a similar structure in this parasite, and its terminal trisaccharide either functions as or is part of an immunodominant glycotope. Here, we explored whether extending the trisaccharide with a mannose unit would enhance its efficacy as a biomarker for the serological detection of L. (V.) braziliensis. We synthesized the tetrasaccharide Galpα1,6Galpα1,3Galfß1,3Manpα(CH2)3SH (G31SH) and conjugated it to maleimide-functionalized BSA to afford NGP31b. When we assessed the efficacy of NGP28b and NGP31b by chemiluminescent enzyme-linked immunosorbent assay on a cohort of CL patients with L. (V.) braziliensis infection from Bolivia and Argentina against a healthy control group, both NGPs exhibited similar or identical sensitivity, specificity, and accuracy. This finding implies that the mannose moiety at the reducing end is not part of the glycotope recognized by the parasite-specific anti-α-Gal antibodies in patients' sera, nor does it exert a relevant influence on the terminal trisaccharide's conformation. Moreover, the mannose does not seem to inhibit glycan-antibody interactions. Therefore, NGP31b is a viable and dependable BMK for the serodiagnosis of CL caused by L. (V.) braziliensis.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Humanos , Leishmania braziliensis/genética , Manose , Leishmaniose Cutânea/diagnóstico , Leishmaniose Cutânea/tratamento farmacológico , Glicoproteínas , Trissacarídeos
2.
J Chem Inf Model ; 63(15): 4641-4653, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37493573

RESUMO

DNA-encoded libraries (DELs) are widely used in the discovery of drug candidates, and understanding their design principles is critical for accessing better libraries. Most DELs are combinatorial in nature and are synthesized by assembling sets of building blocks in specific topologies. In this study, different aspects of library topology were explored and their effect on DEL properties and chemical diversity was analyzed. We introduce a descriptor for DEL topological assignment (DELTA) and use it to examine the landscape of possible DEL topologies and their coverage in the literature. A generative topographic mapping analysis revealed that the impact of library topology on chemical space coverage is secondary to building block selection. Furthermore, it became apparent that the descriptor used to analyze chemical space dictates how structures cluster, with the effects of topology being apparent when using three-dimensional descriptors but not with common two-dimensional descriptors. This outcome points to potential challenges of attempts to predict DEL productivity based on chemical space analyses alone. While topology is rather inconsequential for defining the chemical space of encoded compounds, it greatly affects possible interactions with target proteins as illustrated in docking studies using NAD/NADP binding proteins as model receptors.


Assuntos
DNA , Descoberta de Drogas , Descoberta de Drogas/métodos , DNA/química , Biblioteca Gênica
3.
Eur J Med Chem ; 246: 114980, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495630

RESUMO

DNA-encoded chemical libraries (DECLs) interrogate the interactions of a target of interest with vast numbers of molecules. DECLs hence provide abundant information about the chemical ligand space for therapeutic targets, and there is considerable interest in methods for exploiting DECL screening data to predict novel ligands. Here we introduce one such approach and demonstrate its feasibility using the cancer-related poly-(ADP-ribose)transferase tankyrase 1 (TNKS1) as a model target. First, DECL affinity selections resulted in structurally diverse TNKS1 inhibitors with high potency including compound 2 with an IC50 value of 0.8 nM. Additionally, TNKS1 hits from four DECLs were translated into pharmacophore models, which were exploited in combination with docking-based screening to identify TNKS1 ligand candidates in databases of commercially available compounds. This computational strategy afforded TNKS1 inhibitors that are outside the chemical space covered by the DECLs and yielded the drug-like lead compound 12 with an IC50 value of 22 nM. The study further provided insights in the reliability of screening data and the effect of library design on hit compounds. In particular, the study revealed that while in general DECL screening data are in good agreement with off-DNA ligand binding, unpredictable interactions of the DNA-attachment linker with the target protein contribute to the noise in the affinity selection data.


Assuntos
Bibliotecas de Moléculas Pequenas , Tanquirases , Bibliotecas de Moléculas Pequenas/química , Farmacóforo , Tanquirases/metabolismo , Ligantes , Reprodutibilidade dos Testes , DNA/metabolismo
4.
Molecules ; 27(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36080480

RESUMO

Chagas disease (CD) is caused by the parasite Trypanosoma cruzi and affects 6-7 million people worldwide. The diagnosis is still challenging, due to extensive parasite diversity encompassing seven genotypes (TcI-VI and Tcbat) with diverse ecoepidemiological, biological, and pathological traits. Chemotherapeutic intervention is usually effective but associated with severe adverse events. The development of safer, more effective therapies is hampered by the lack of biomarker(s) (BMKs) for the early assessment of therapeutic outcomes. The mammal-dwelling trypomastigote parasite stage expresses glycosylphosphatidylinositol-anchored mucins (tGPI-MUC), whose O-glycans are mostly branched with terminal, nonreducing α-galactopyranosyl (α-Gal) glycotopes. These are absent in humans, and thus highly immunogenic and inducers of specific CD anti-α-Gal antibodies. In search for α-Gal-based BMKs, here we describe the synthesis of neoglycoprotein NGP11b, comprised of a carrier protein decorated with the branched trisaccharide Galα(1,2)[Galα(1,6)]Galß. By chemiluminescent immunoassay using sera/plasma from chronic CD (CCD) patients from Venezuela and Mexico and healthy controls, NGP11b exhibited sensitivity and specificity similar to that of tGPI-MUC from genotype TcI, predominant in those countries. Preliminary evaluation of CCD patients subjected to chemotherapy showed a significant reduction in anti-α-Gal antibody reactivity to NGP11b. Our data indicated that NGP11b is a potential BMK for diagnosis and treatment assessment in CCD patients.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Biomarcadores , Doença de Chagas/diagnóstico , Doença de Chagas/tratamento farmacológico , Humanos , Mucinas , Trissacarídeos
5.
Emerg Microbes Infect ; 11(1): 2147-2159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36039908

RESUMO

American tegumentary leishmaniasis (TL) caused by Leishmania braziliensis is characterized by a spectrum of clinical presentations, ranging from localized cutaneous ulcers (CL), mucosal (ML), or disseminated (DL) disease, to a subclinical (SC) asymptomatic form. Current diagnosis based on parasite culture and/or microscopy lacks sensitivity and specificity. Previous studies showed that patients with CL and ML have very high levels of Leishmania-specific anti-α-Gal antibodies. However, the native parasite α-Gal glycotope(s) is(are) still elusive, thus they have not yet been explored for a more accurate TL diagnosis. Using a chemiluminescent immunoassay, we evaluated the seroreactivity of TL patients across its clinical spectrum, and of endemic (EC) and nonendemic healthy controls (NEC) against three synthetic neoglycoproteins (NGP29b, NGP30b, and NGP28b), respectively comprising the L. major-derived type-2 glycoinositolphospholipid (GIPL)-1 (Galfß1,3Manα), GIPL-2 (Galα1,3Galfß1,3Manα), and GIPL-3 (Galα1,6Galα1,3Galfß) glycotopes. Contrary to NGP29b and NGP30b, NGP28b exhibited high sensitivity and specificity to a CL serum pool. More importantly, NGP28b reacted strongly and specifically with individual sera from distinct clinical forms of TL, especially with SC sera, with 94% sensitivity and 97% specificity, by post-two-graph receiver-operating characteristic curve analysis. Contrary to NGP29b, NGP28b showed low cross-reactivity with Chagas disease and control (NEC/EC) sera. Additionally, seroreactivity of CL patients against NGP28b was significantly decreased after successful chemotherapy, indicating that L. braziliensis-specific anti-α-Gal antibodies may serve as an early biomarker of cure in CL. Our data also points towards the applicability of L. major type-2 GIPL-3-derived Galα1,6Galα1,3Galfß glycotope for the serological diagnosis of American TL, particularly of the subclinical form.


Assuntos
Leishmania braziliensis , Leishmaniose Cutânea , Biomarcadores , Glicoproteínas , Humanos , Testes Sorológicos
6.
Molecules ; 27(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35056727

RESUMO

Chagas disease (CD) can be accurately diagnosed by detecting Trypanosoma cruzi in patients' blood using polymerase chain reaction (PCR). However, parasite-derived biomarkers are of great interest for the serological diagnosis and early evaluation of chemotherapeutic efficacy when PCR may fail, owing to a blood parasite load below the method's limit of detection. Previously, we focused on the detection of specific anti-α-galactopyranosyl (α-Gal) antibodies in chronic CD (CCD) patients elicited by α-Gal glycotopes copiously expressed on insect-derived and mammal-dwelling infective parasite stages. Nevertheless, these stages also abundantly express cell surface glycosylphosphatidylinositol (GPI)-anchored glycoproteins and glycoinositolphospholipids (GIPLs) bearing nonreducing terminal ß-galactofuranosyl (ß-Galf) residues, which are equally foreign to humans and, therefore, highly immunogenic. Here we report that CCD patients' sera react specifically with synthetic ß-Galf-containing glycans. We took a reversed immunoglycomics approach that entailed: (a) Synthesis of T. cruzi GIPL-derived Galfß1,3Manpα-(CH2)3SH (glycan G29SH) and Galfß1,3Manpα1,2-[Galfß1,3]Manpα-(CH2)3SH (glycan G32SH); and (b) preparation of neoglycoproteins NGP29b and NGP32b, and their evaluation in a chemiluminescent immunoassay. Receiver-operating characteristic analysis revealed that NGP32b can distinguish CCD sera from sera of healthy individuals with 85.3% sensitivity and 100% specificity. This suggests that Galfß1,3Manpα1,2-[Galfß1,3]Manpα is an immunodominant glycotope and that NGP32b could potentially be used as a novel CCD biomarker.


Assuntos
Doença de Chagas
7.
JACS Au ; 1(8): 1275-1287, 2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34467365

RESUMO

All healthy humans have high levels of natural anti-α-galactosyl (α-Gal) antibodies (elicited by yet uncharacterized glycotopes), which may play important roles in immunoglycomics: (a) potential protection against certain parasitic and viral zoonotic infections; (b) targeting of α-Gal-engineered cancer cells; (c) aiding in tissue repair; and (d) serving as adjuvants in α-Gal-based vaccines. Patients with certain protozoan infections have specific anti-α-Gal antibodies, elicited against parasite-derived α-Gal-bearing glycotopes. These glycotopes, however, remain elusive except for the well-characterized glycotope Galα1,3Galß1,4GlcNAcα, expressed by Trypanosoma cruzi. The discovery of new parasitic glycotopes is greatly hindered by the enormous structural diversity of cell-surface glycans and the technical challenges of classical immunoglycomics, a top-down approach from cultivated parasites to isolated glycans. Here, we demonstrate that reversed immunoglycomics, a bottom-up approach, can identify parasite species-specific α-Gal-bearing glycotopes by probing synthetic oligosaccharides on neoglycoproteins. This method was tested here seeking to identify as-yet unknown glycotopes specific for Leishmania major, the causative agent of Old-World cutaneous leishmaniasis (OWCL). Neoglycoproteins decorated with synthetic α-Gal-containing oligosaccharides derived from L. major glycoinositolphospholipids served as antigens in a chemiluminescent enzyme-linked immunosorbent assay using sera from OWCL patients and noninfected individuals. Receiver-operating characteristic analysis identified Galpα1,3Galfß and Galpα1,3Galfß1,3Manpα glycotopes as diagnostic biomarkers for L. major-caused OWCL, which can distinguish with 100% specificity from heterologous diseases and L. tropica-caused OWCL. These glycotopes could prove useful in the development of rapid α-Gal-based diagnostics and vaccines for OWCL. Furthermore, this method could help unravel cryptic α-Gal-glycotopes of other protozoan parasites and enterobacteria that elicit the natural human anti-α-Gal antibodies.

8.
Methods Mol Biol ; 1955: 287-308, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868536

RESUMO

Chagas disease (ChD), caused by the protozoan parasite Trypanosoma cruzi, affects millions of people worldwide. Chemotherapy is restricted to two drugs, which are partially effective and may cause severe side effects, leading to cessation of treatment in a significant number of patients. Currently, there are no biomarkers to assess therapeutic efficacy of these drugs in the chronic stage. Moreover, no preventive or therapeutic vaccines are available. In this chapter, we describe the purification of Trypanosoma cruzi trypomastigote-derived glycosylphosphatidylinositol (GPI)-anchored mucins (tGPI-mucins) for their use as antigens for the reliable primary or confirmatory diagnosis and as prognostic biomarkers for early assessment of cure following ChD chemotherapy. We also describe, as an example, the synthesis of a potential tGPI-mucin-derived α-Gal-terminating glycan and its coupling to a carrier protein for use as diagnostic and prognostic biomarker in ChD.


Assuntos
Doença de Chagas/diagnóstico , Proteínas Ligadas por GPI/isolamento & purificação , Glicoproteínas/química , Mucinas/isolamento & purificação , Proteínas de Protozoários/isolamento & purificação , Trypanosoma cruzi/química , Animais , Linhagem Celular , Ensaio de Imunoadsorção Enzimática/métodos , Proteínas Ligadas por GPI/química , Glicoproteínas/síntese química , Humanos , Macaca mulatta , Modelos Moleculares , Mucinas/química , Proteínas de Protozoários/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
9.
Parasitology ; 145(13): 1758-1764, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29898796

RESUMO

Outbreaks of Old World cutaneous leishmaniasis (CL) have significantly increased due to the conflicts in the Middle East, with most of the cases occurring in resource-limited areas such as refugee settlements. The standard methods of diagnosis include microscopy and parasite culture, which have several limitations. To address the growing need for a CL diagnostic that can be field applicable, we have identified five candidate neoglycoproteins (NGPs): Galα (NGP3B), Galα(1,3)Galα (NGP17B), Galα(1,3)Galß (NGP9B), Galα(1,6)[Galα(1,2)]Galß (NGP11B), and Galα(1,3)Galß(1,4)Glcß (NGP1B) that are differentially recognized in sera from individuals with Leishmania major infection as compared with sera from heterologous controls. These candidates contain terminal, non-reducing α-galactopyranosyl (α-Gal) residues, which are known potent immunogens to humans. Logistic regression models found that NGP3B retained the best diagnostic potential (area under the curve from receiver-operating characteristic curve = 0.8). Our data add to the growing body of work demonstrating the exploitability of the human anti-α-Gal response in CL diagnosis.


Assuntos
Anticorpos Anti-Helmínticos/isolamento & purificação , Antígenos de Helmintos/isolamento & purificação , Glicoproteínas/química , Leishmaniose Cutânea/diagnóstico , Adolescente , Adulto , Animais , Área Sob a Curva , Bancos de Espécimes Biológicos , Epitopos/imunologia , Feminino , Humanos , Leishmania major , Masculino , Pessoa de Meia-Idade , Oriente Médio , Análise de Regressão , Adulto Jovem
10.
PLoS Negl Trop Dis ; 11(10): e0006039, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29069089

RESUMO

BACKGROUND: Protozoan parasites from the genus Leishmania cause broad clinical manifestations known as leishmaniases, which affect millions of people worldwide. Cutaneous leishmaniasis (CL), caused by L. major, is one the most common forms of the disease in the Old World. There is no preventive or therapeutic human vaccine available for L. major CL, and existing drug treatments are expensive, have toxic side effects, and resistant parasite strains have been reported. Hence, further therapeutic interventions against the disease are necessary. Terminal, non-reducing, and linear α-galactopyranosyl (α-Gal) epitopes are abundantly found on the plasma membrane glycolipids of L. major known as glycoinositolphospholipids. The absence of these α-Gal epitopes in human cells makes these glycans highly immunogenic and thus potential targets for vaccine development against CL. METHODOLOGY/PRINCIPAL FINDINGS: Here, we evaluated three neoglycoproteins (NGPs), containing synthetic α-Gal epitopes covalently attached to bovine serum albumin (BSA), as vaccine candidates against L. major, using α1,3-galactosyltransferase-knockout (α1,3GalT-KO) mice. These transgenic mice, similarly to humans, do not express nonreducing, linear α-Gal epitopes in their cells and are, therefore, capable of producing high levels of anti-α-Gal antibodies. We observed that Galα(1,6)Galß-BSA (NGP5B), but not Galα(1,4)Galß-BSA (NGP12B) or Galα(1,3)Galα-BSA (NGP17B), was able to significantly reduce the size of footpad lesions by 96% in comparison to control groups. Furthermore, we observed a robust humoral and cellular immune response with production of high levels of protective lytic anti-α-Gal antibodies and induction of Th1 cytokines. CONCLUSIONS/SIGNIFICANCE: We propose that NGP5B is an attractive candidate for the study of potential synthetic α-Gal-neoglycoprotein-based vaccines against L. major infection.


Assuntos
Galactosídeos/imunologia , Glicoproteínas/imunologia , Leishmania major/imunologia , Vacinas contra Leishmaniose/imunologia , Leishmaniose Cutânea/imunologia , Animais , Biomarcadores , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos/imunologia , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Leishmaniose Cutânea/prevenção & controle , Camundongos , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA